3.2.57 \(\int \frac {(a+a \sec (e+f x))^{3/2}}{c+d \sec (e+f x)} \, dx\) [157]

3.2.57.1 Optimal result
3.2.57.2 Mathematica [A] (verified)
3.2.57.3 Rubi [A] (verified)
3.2.57.4 Maple [B] (warning: unable to verify)
3.2.57.5 Fricas [A] (verification not implemented)
3.2.57.6 Sympy [F]
3.2.57.7 Maxima [F]
3.2.57.8 Giac [F]
3.2.57.9 Mupad [F(-1)]

3.2.57.1 Optimal result

Integrand size = 27, antiderivative size = 110 \[ \int \frac {(a+a \sec (e+f x))^{3/2}}{c+d \sec (e+f x)} \, dx=\frac {2 a^{3/2} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{c f}+\frac {2 a^{3/2} (c-d) \arctan \left (\frac {\sqrt {a} \sqrt {d} \tan (e+f x)}{\sqrt {c+d} \sqrt {a+a \sec (e+f x)}}\right )}{c \sqrt {d} \sqrt {c+d} f} \]

output
2*a^(3/2)*arctan(a^(1/2)*tan(f*x+e)/(a+a*sec(f*x+e))^(1/2))/c/f+2*a^(3/2)* 
(c-d)*arctan(a^(1/2)*d^(1/2)*tan(f*x+e)/(c+d)^(1/2)/(a+a*sec(f*x+e))^(1/2) 
)/c/f/d^(1/2)/(c+d)^(1/2)
 
3.2.57.2 Mathematica [A] (verified)

Time = 0.87 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.23 \[ \int \frac {(a+a \sec (e+f x))^{3/2}}{c+d \sec (e+f x)} \, dx=\frac {\sqrt {2} a \left (\sqrt {d} \sqrt {c+d} \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (e+f x)\right )\right )+(c-d) \arctan \left (\frac {\sqrt {2} \sqrt {d} \sin \left (\frac {1}{2} (e+f x)\right )}{\sqrt {c+d} \sqrt {\cos (e+f x)}}\right )\right ) \sqrt {\cos (e+f x)} \sec \left (\frac {1}{2} (e+f x)\right ) \sqrt {a (1+\sec (e+f x))}}{c \sqrt {d} \sqrt {c+d} f} \]

input
Integrate[(a + a*Sec[e + f*x])^(3/2)/(c + d*Sec[e + f*x]),x]
 
output
(Sqrt[2]*a*(Sqrt[d]*Sqrt[c + d]*ArcSin[Sqrt[2]*Sin[(e + f*x)/2]] + (c - d) 
*ArcTan[(Sqrt[2]*Sqrt[d]*Sin[(e + f*x)/2])/(Sqrt[c + d]*Sqrt[Cos[e + f*x]] 
)])*Sqrt[Cos[e + f*x]]*Sec[(e + f*x)/2]*Sqrt[a*(1 + Sec[e + f*x])])/(c*Sqr 
t[d]*Sqrt[c + d]*f)
 
3.2.57.3 Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {3042, 4415, 3042, 4261, 216, 4455, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (e+f x)+a)^{3/2}}{c+d \sec (e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (e+f x+\frac {\pi }{2}\right )+a\right )^{3/2}}{c+d \csc \left (e+f x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4415

\(\displaystyle \frac {a (c-d) \int \frac {\sec (e+f x) \sqrt {\sec (e+f x) a+a}}{c+d \sec (e+f x)}dx}{c}+\frac {a \int \sqrt {\sec (e+f x) a+a}dx}{c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a (c-d) \int \frac {\csc \left (e+f x+\frac {\pi }{2}\right ) \sqrt {\csc \left (e+f x+\frac {\pi }{2}\right ) a+a}}{c+d \csc \left (e+f x+\frac {\pi }{2}\right )}dx}{c}+\frac {a \int \sqrt {\csc \left (e+f x+\frac {\pi }{2}\right ) a+a}dx}{c}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {a (c-d) \int \frac {\csc \left (e+f x+\frac {\pi }{2}\right ) \sqrt {\csc \left (e+f x+\frac {\pi }{2}\right ) a+a}}{c+d \csc \left (e+f x+\frac {\pi }{2}\right )}dx}{c}-\frac {2 a^2 \int \frac {1}{\frac {a^2 \tan ^2(e+f x)}{\sec (e+f x) a+a}+a}d\left (-\frac {a \tan (e+f x)}{\sqrt {\sec (e+f x) a+a}}\right )}{c f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {a (c-d) \int \frac {\csc \left (e+f x+\frac {\pi }{2}\right ) \sqrt {\csc \left (e+f x+\frac {\pi }{2}\right ) a+a}}{c+d \csc \left (e+f x+\frac {\pi }{2}\right )}dx}{c}+\frac {2 a^{3/2} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a \sec (e+f x)+a}}\right )}{c f}\)

\(\Big \downarrow \) 4455

\(\displaystyle \frac {2 a^{3/2} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a \sec (e+f x)+a}}\right )}{c f}-\frac {2 a^2 (c-d) \int \frac {1}{\frac {a^2 d \tan ^2(e+f x)}{\sec (e+f x) a+a}+a (c+d)}d\left (-\frac {a \tan (e+f x)}{\sqrt {\sec (e+f x) a+a}}\right )}{c f}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {2 a^{3/2} (c-d) \arctan \left (\frac {\sqrt {a} \sqrt {d} \tan (e+f x)}{\sqrt {c+d} \sqrt {a \sec (e+f x)+a}}\right )}{c \sqrt {d} f \sqrt {c+d}}+\frac {2 a^{3/2} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a \sec (e+f x)+a}}\right )}{c f}\)

input
Int[(a + a*Sec[e + f*x])^(3/2)/(c + d*Sec[e + f*x]),x]
 
output
(2*a^(3/2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + a*Sec[e + f*x]]])/(c*f) 
+ (2*a^(3/2)*(c - d)*ArcTan[(Sqrt[a]*Sqrt[d]*Tan[e + f*x])/(Sqrt[c + d]*Sq 
rt[a + a*Sec[e + f*x]])])/(c*Sqrt[d]*Sqrt[c + d]*f)
 

3.2.57.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4415
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*( 
d_.) + (c_)), x_Symbol] :> Simp[a/c   Int[Sqrt[a + b*Csc[e + f*x]], x], x] 
+ Simp[(b*c - a*d)/c   Int[Csc[e + f*x]*(Sqrt[a + b*Csc[e + f*x]]/(c + d*Cs 
c[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] & 
& (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0])
 

rule 4455
Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/(c 
sc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[-2*(b/f)   Subst[In 
t[1/(b*c + a*d + d*x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], 
 x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 
0]
 
3.2.57.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(839\) vs. \(2(90)=180\).

Time = 14.28 (sec) , antiderivative size = 840, normalized size of antiderivative = 7.64

method result size
default \(\frac {\sqrt {2}\, a \left (2 \sqrt {\left (c +d \right ) \left (c -d \right )}\, \sqrt {\frac {d}{c -d}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}\right )+\ln \left (-\frac {2 \left (\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \sqrt {2}\, \sqrt {\frac {d}{c -d}}\, c -\sqrt {2}\, \sqrt {\frac {d}{c -d}}\, \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, d +\sqrt {\left (c +d \right ) \left (c -d \right )}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-c +d \right )}{-c \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )+\left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right ) d +\sqrt {\left (c +d \right ) \left (c -d \right )}}\right ) c -d \ln \left (-\frac {2 \left (\sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \sqrt {2}\, \sqrt {\frac {d}{c -d}}\, c -\sqrt {2}\, \sqrt {\frac {d}{c -d}}\, \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, d +\sqrt {\left (c +d \right ) \left (c -d \right )}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-c +d \right )}{-c \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )+\left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right ) d +\sqrt {\left (c +d \right ) \left (c -d \right )}}\right )-\ln \left (\frac {2 \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \sqrt {2}\, \sqrt {\frac {d}{c -d}}\, c -2 \sqrt {2}\, \sqrt {\frac {d}{c -d}}\, \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, d -2 \sqrt {\left (c +d \right ) \left (c -d \right )}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-2 c +2 d}{c \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-\left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right ) d +\sqrt {\left (c +d \right ) \left (c -d \right )}}\right ) c +d \ln \left (\frac {2 \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \sqrt {2}\, \sqrt {\frac {d}{c -d}}\, c -2 \sqrt {2}\, \sqrt {\frac {d}{c -d}}\, \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, d -2 \sqrt {\left (c +d \right ) \left (c -d \right )}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-2 c +2 d}{c \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )-\left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right ) d +\sqrt {\left (c +d \right ) \left (c -d \right )}}\right )\right ) \sqrt {\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}\, \sqrt {-\frac {2 a}{\left (1-\cos \left (f x +e \right )\right )^{2} \csc \left (f x +e \right )^{2}-1}}}{2 f \sqrt {\left (c +d \right ) \left (c -d \right )}\, c \sqrt {\frac {d}{c -d}}}\) \(840\)

input
int((a+a*sec(f*x+e))^(3/2)/(c+d*sec(f*x+e)),x,method=_RETURNVERBOSE)
 
output
1/2/f*2^(1/2)*a/((c+d)*(c-d))^(1/2)/c/(d/(c-d))^(1/2)*(2*((c+d)*(c-d))^(1/ 
2)*(d/(c-d))^(1/2)*arctanh(2^(1/2)/((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2) 
*(-cot(f*x+e)+csc(f*x+e)))+ln(-2*(((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2)* 
2^(1/2)*(d/(c-d))^(1/2)*c-2^(1/2)*(d/(c-d))^(1/2)*((1-cos(f*x+e))^2*csc(f* 
x+e)^2-1)^(1/2)*d+((c+d)*(c-d))^(1/2)*(-cot(f*x+e)+csc(f*x+e))-c+d)/(-c*(- 
cot(f*x+e)+csc(f*x+e))+(-cot(f*x+e)+csc(f*x+e))*d+((c+d)*(c-d))^(1/2)))*c- 
d*ln(-2*(((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2)*2^(1/2)*(d/(c-d))^(1/2)*c 
-2^(1/2)*(d/(c-d))^(1/2)*((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2)*d+((c+d)* 
(c-d))^(1/2)*(-cot(f*x+e)+csc(f*x+e))-c+d)/(-c*(-cot(f*x+e)+csc(f*x+e))+(- 
cot(f*x+e)+csc(f*x+e))*d+((c+d)*(c-d))^(1/2)))-ln(2*(((1-cos(f*x+e))^2*csc 
(f*x+e)^2-1)^(1/2)*2^(1/2)*(d/(c-d))^(1/2)*c-2^(1/2)*(d/(c-d))^(1/2)*((1-c 
os(f*x+e))^2*csc(f*x+e)^2-1)^(1/2)*d-((c+d)*(c-d))^(1/2)*(-cot(f*x+e)+csc( 
f*x+e))-c+d)/(c*(-cot(f*x+e)+csc(f*x+e))-(-cot(f*x+e)+csc(f*x+e))*d+((c+d) 
*(c-d))^(1/2)))*c+d*ln(2*(((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^(1/2)*2^(1/2)* 
(d/(c-d))^(1/2)*c-2^(1/2)*(d/(c-d))^(1/2)*((1-cos(f*x+e))^2*csc(f*x+e)^2-1 
)^(1/2)*d-((c+d)*(c-d))^(1/2)*(-cot(f*x+e)+csc(f*x+e))-c+d)/(c*(-cot(f*x+e 
)+csc(f*x+e))-(-cot(f*x+e)+csc(f*x+e))*d+((c+d)*(c-d))^(1/2))))*((1-cos(f* 
x+e))^2*csc(f*x+e)^2-1)^(1/2)*(-2*a/((1-cos(f*x+e))^2*csc(f*x+e)^2-1))^(1/ 
2)
 
3.2.57.5 Fricas [A] (verification not implemented)

Time = 0.91 (sec) , antiderivative size = 731, normalized size of antiderivative = 6.65 \[ \int \frac {(a+a \sec (e+f x))^{3/2}}{c+d \sec (e+f x)} \, dx=\left [-\frac {{\left (a c - a d\right )} \sqrt {-\frac {a}{c d + d^{2}}} \log \left (\frac {2 \, {\left (c d + d^{2}\right )} \sqrt {-\frac {a}{c d + d^{2}}} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + {\left (a c + 2 \, a d\right )} \cos \left (f x + e\right )^{2} - a d + {\left (a c + a d\right )} \cos \left (f x + e\right )}{c \cos \left (f x + e\right )^{2} + {\left (c + d\right )} \cos \left (f x + e\right ) + d}\right ) - \sqrt {-a} a \log \left (\frac {2 \, a \cos \left (f x + e\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right ) + 1}\right )}{c f}, -\frac {2 \, a^{\frac {3}{2}} \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right ) + {\left (a c - a d\right )} \sqrt {-\frac {a}{c d + d^{2}}} \log \left (\frac {2 \, {\left (c d + d^{2}\right )} \sqrt {-\frac {a}{c d + d^{2}}} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + {\left (a c + 2 \, a d\right )} \cos \left (f x + e\right )^{2} - a d + {\left (a c + a d\right )} \cos \left (f x + e\right )}{c \cos \left (f x + e\right )^{2} + {\left (c + d\right )} \cos \left (f x + e\right ) + d}\right )}{c f}, -\frac {2 \, {\left (a c - a d\right )} \sqrt {\frac {a}{c d + d^{2}}} \arctan \left (\frac {{\left (c + d\right )} \sqrt {\frac {a}{c d + d^{2}}} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{a \sin \left (f x + e\right )}\right ) - \sqrt {-a} a \log \left (\frac {2 \, a \cos \left (f x + e\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right ) + 1}\right )}{c f}, -\frac {2 \, {\left ({\left (a c - a d\right )} \sqrt {\frac {a}{c d + d^{2}}} \arctan \left (\frac {{\left (c + d\right )} \sqrt {\frac {a}{c d + d^{2}}} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{a \sin \left (f x + e\right )}\right ) + a^{\frac {3}{2}} \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right )\right )}}{c f}\right ] \]

input
integrate((a+a*sec(f*x+e))^(3/2)/(c+d*sec(f*x+e)),x, algorithm="fricas")
 
output
[-((a*c - a*d)*sqrt(-a/(c*d + d^2))*log((2*(c*d + d^2)*sqrt(-a/(c*d + d^2) 
)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a*c 
 + 2*a*d)*cos(f*x + e)^2 - a*d + (a*c + a*d)*cos(f*x + e))/(c*cos(f*x + e) 
^2 + (c + d)*cos(f*x + e) + d)) - sqrt(-a)*a*log((2*a*cos(f*x + e)^2 - 2*s 
qrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) 
+ a*cos(f*x + e) - a)/(cos(f*x + e) + 1)))/(c*f), -(2*a^(3/2)*arctan(sqrt( 
(a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e))) + 
(a*c - a*d)*sqrt(-a/(c*d + d^2))*log((2*(c*d + d^2)*sqrt(-a/(c*d + d^2))*s 
qrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + (a*c + 
2*a*d)*cos(f*x + e)^2 - a*d + (a*c + a*d)*cos(f*x + e))/(c*cos(f*x + e)^2 
+ (c + d)*cos(f*x + e) + d)))/(c*f), -(2*(a*c - a*d)*sqrt(a/(c*d + d^2))*a 
rctan((c + d)*sqrt(a/(c*d + d^2))*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))* 
cos(f*x + e)/(a*sin(f*x + e))) - sqrt(-a)*a*log((2*a*cos(f*x + e)^2 - 2*sq 
rt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) + 
 a*cos(f*x + e) - a)/(cos(f*x + e) + 1)))/(c*f), -2*((a*c - a*d)*sqrt(a/(c 
*d + d^2))*arctan((c + d)*sqrt(a/(c*d + d^2))*sqrt((a*cos(f*x + e) + a)/co 
s(f*x + e))*cos(f*x + e)/(a*sin(f*x + e))) + a^(3/2)*arctan(sqrt((a*cos(f* 
x + e) + a)/cos(f*x + e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e))))/(c*f)]
 
3.2.57.6 Sympy [F]

\[ \int \frac {(a+a \sec (e+f x))^{3/2}}{c+d \sec (e+f x)} \, dx=\int \frac {\left (a \left (\sec {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}{c + d \sec {\left (e + f x \right )}}\, dx \]

input
integrate((a+a*sec(f*x+e))**(3/2)/(c+d*sec(f*x+e)),x)
 
output
Integral((a*(sec(e + f*x) + 1))**(3/2)/(c + d*sec(e + f*x)), x)
 
3.2.57.7 Maxima [F]

\[ \int \frac {(a+a \sec (e+f x))^{3/2}}{c+d \sec (e+f x)} \, dx=\int { \frac {{\left (a \sec \left (f x + e\right ) + a\right )}^{\frac {3}{2}}}{d \sec \left (f x + e\right ) + c} \,d x } \]

input
integrate((a+a*sec(f*x+e))^(3/2)/(c+d*sec(f*x+e)),x, algorithm="maxima")
 
output
integrate((a*sec(f*x + e) + a)^(3/2)/(d*sec(f*x + e) + c), x)
 
3.2.57.8 Giac [F]

\[ \int \frac {(a+a \sec (e+f x))^{3/2}}{c+d \sec (e+f x)} \, dx=\int { \frac {{\left (a \sec \left (f x + e\right ) + a\right )}^{\frac {3}{2}}}{d \sec \left (f x + e\right ) + c} \,d x } \]

input
integrate((a+a*sec(f*x+e))^(3/2)/(c+d*sec(f*x+e)),x, algorithm="giac")
 
output
sage0*x
 
3.2.57.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (e+f x))^{3/2}}{c+d \sec (e+f x)} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (e+f\,x\right )}\right )}^{3/2}}{c+\frac {d}{\cos \left (e+f\,x\right )}} \,d x \]

input
int((a + a/cos(e + f*x))^(3/2)/(c + d/cos(e + f*x)),x)
 
output
int((a + a/cos(e + f*x))^(3/2)/(c + d/cos(e + f*x)), x)